
72 pt
1 in

25.4 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for first page
Paper size this page US Letter

AnyBipe: An Automated End-to-End Framework for Training and
Deploying Bipedal Robots Powered by Large Language Models

Yifei Yao1, Wentao He2
†
, Chenyu Gu1

†
, Jiaheng Du1

†
, Fuwei Tan1, Zhen Zhu1, and Jun-Guo Lu1,∗

Abstract— Training and deploying reinforcement learning
(RL) policies for robots is a complex task, requiring careful de-
sign of reward functions, sim-to-real transfer, and performance
evaluation across various robot configurations. These tasks
traditionally demand significant human expertise and effort.
To address these challenges, this paper introduces Anybipe,
a novel, fully automated, end-to-end framework for training
and deploying bipedal robots, leveraging large language models
(LLMs) for reward function generation, while supervising
model training, evaluation, and deployment. The framework
integrates comprehensive quantitative metrics to assess policy
performance, deployment effectiveness, and safety. Additionally,
it allows users to incorporate prior knowledge and preferences,
improving the accuracy and alignment of generated policies
with expectations. We demonstrate how Anybipe reduces human
labor while maintaining high levels of accuracy and safety,
examined on three different bipedal robots, showcasing its
potential for autonomous RL training and deployment.

I. INTRODUCTION

With the integration of advanced control algorithms, en-
hanced physical simulations, and improved computational
power, robotics has achieved remarkable progress [1]. These
advancements allow robots to tackle tasks from industrial
automation to personal assistance with exceptional efficiency
and autonomy [2]. As industrial robotics continues to ad-
vance, attention has increasingly shifted toward humanoid
robots, with researchers prioritizing the replication of human-
like traits and the ability to perform tasks designed for
humans [3]. In this context, bipedal robots offer a practical
means to simulate the structure of human lower limbs,
providing a valuable approach to studying and improving
locomotion skills in humanoid robotics.

Control strategies for bipedal robots typically draw on
either traditional control techniques or reinforcement learn-
ing (RL) approaches [4]. Traditional methods depend on
abstracting problems, building models, and detailed planning,
whereas RL uses reward functions to iteratively steer robots
toward completing tasks. By interacting repeatedly with their
environments, RL empowers robots to fine-tune their control
strategies and develop critical skills. This method proves
especially effective in simulated settings, where robots can

1 Author Y. Yao, C. Gu, J. Du, F. Tan, Z. Zhu, and Jun-Guo
Lu are with Department of Automation, Shanghai Jiao Tong Uni-
versity, Shanghai, China. Email: {godchaser, jiahengdu,
wwddv1995, dyzz0928 , jglu }@sjtu.edu.cn, C. Gu:
guchenyuFG@outlook.com

2W. He is with University of Michigan - Shanghai Jiao Tong University
Joint Institute , Shanghai Jiao Tong University, Shanghai, China Email:
goodmorning hwt@sjtu.edu.cn
† The second to the fourth author contributed equally.
∗ is for corresponding authorship.

learn through trial and error to navigate complex terrains and
handle disturbances.

Despite these strides, training and deploying reinforce-
ment learning (RL) algorithms remain formidable challenges.
Crafting effective reward functions demands careful attention
to task-specific objectives and the inclusion of safety con-
straints for real-world application [5]. This intricacy requires
significant engineering effort across training, testing, and
refinement stages. While techniques like reward shaping and
safe RL hold promise [6], their reliance on prior experi-
ence often complicates the design process. Furthermore, the
persistent ”Sim-to-Real” challenge—stemming from hard-
to-measure limitations in physics simulations—adds another
layer of difficulty [7]. Approaches such as domain ran-
domization and observation design seek to bridge this gap
by increasing robustness and leveraging existing knowledge,
respectively. However, these solutions still rely heavily on
human expertise and trial-and-error efforts, demanding con-
siderable time.

The incorporation of large language models (LLMs) into
robotics offers a compelling way to lessen this human work-
load by tapping into their vast knowledge reserves. Previous
studies highlight the potential of LLMs in areas such as
code generation [8], robot action planning [9], and process
improvement through feedback [10]. These efforts provide
useful tools to cut down on manual labor and improve
adaptability across diverse tasks. However, a fully automated
framework that covers the entire pipeline—from design and
training to deployment—has yet to emerge.

To address the problem discussed, we introduce Anybipe1,
an innovative framework that utilizes large language mod-
els (LLM) to automate the design, oversight and ongoing
enhancement of robotic processes. Given a task descrip-
tion, Anybipe independently manages training, verification,
tracking, and evaluation, eliminating the need for human
involvement. By drawing on the deep knowledge embedded
in LLMs, it adeptly handles intricate training challenges,
even when task-specific prior data is scarce. The framework’s
structure is shown in Fig. 1. During training, we use a
tailored RL algorithm with a reference policy that addresses
the cold-start issue, integrates prior work, and speeds up
convergence. For deployment and evaluation, we employ
methods for data gathering and safety checks, paired with
a new metric—the homomorphic evaluator—to measure the
simulation-to-reality gap.

1https://github.com/sjtu-mvasl-robotics/AnyBipe.
git

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

Pre-requisites

URDF MODEL

TRAIN ENV

DEPLOY ENV

STATE TRACKER

Requirements

◆ Compulsory
Env description, task
description, estimator,
reward mapping table,
safety criterion

◆ Optional
Reference reward function,
reference policy from
previous work (teacher),
additional prompts,
custom observation

Prompts
✓ Coding Tips
✓ Regulations
✓ Feedback

Env + Task
Description

References
Custom Configs

LLM

Reward Functions

Previous
Work

Reference
Policy

Estimator Observation

Top Policies
&

Top RewardsHomomorphic Evaluation Estimator
ℱ

Sim
Eval

Reality
Eval

Pass
Safety Check

Feedback
Compiler

Best Model
&

Eval
Feedback

Supervised

Module 1

Module 2

Module 3

We deployed the trained RL policy to our robot
and evaluated its performance in reality. We
converted the reward functions that can be
calculated by real-world sensors and actuators
…
here are the results of the evaluation:
…

Module Function

Module 1:
LLM Reward Function

Generation

Module 2:
Teacher Guided
PPO Training

Module 3:
Deploy, Evaluation,

and Feedback

Optional

Fig. 1: Our framework is organized into three interconnected modules. After receiving prerequisites and requirements, it
generates a reward function via LLM, trains it in simulation, and evaluates performance in both simulation and reality,
offering key feedback. This process requires minimal human effort by automating all procedure with scripts.

We tested Anybipe’s capabilities on three bipedal robots
with differing degrees of freedom (DoFs) and various initial
prompt setups, confirming its versatility and ability to operate
across diverse robots without human input. Our prompts
produce over 60% successful task policies, climbing to 100%
after a few iterations. The top policies outstrip human-
designed solutions by as much as 33.3% in performance.
In the guided RL segment, we see faster convergence, with
success rates rising by an average of 52.1% and up to 94.4%
through curriculum learning. Plus, our homomorphic eval-
uator consistently aligns simulation and real-world results,
effectively gauging the simulation-to-reality gap.

The rest of this paper is organized as follows: section III
explains the design principles and implementation of Any-
bipe’s modules. section IV covers the experiments we ran to
verify each module’s role and show the framework’s training
and deployment strengths. Finally, section V wraps up our
contributions and sketches out future research paths.

II. RELATED WORKS

Reinforcement Learning for Bipedal Robots. Reinforce-
ment learning (RL) has achieved significant success in en-
abling legged robots to learn locomotion and motion control
through data-driven methods, allowing them to adapt to
diverse environmental challenges [11]–[13]. However, prior
works suffer from inefficient exploration in high-dimensional
action spaces, leading to prolonged cold-start phases. Our
framework propose a semi-supervised RL framework within
the Isaac Gym environment that integrates reference policy,
anchoring initial policy exploration near stability-proven
actions from traditional controllers, while enforcing safety
constraints via ground-truth-aligned reward terms. This dual
mechanism of directed exploration and constraint-aware
learning significantly accelerates policy initialization without
compromising the discovery of novel locomotion strategies.

Large Language Model Guided Robotics. Large lan-
guage models (LLMs) have demonstrated considerable ca-

pabilities in task understanding [14], semantic planning
[15], and code generation [16], [17], allowing them to
be effectively integrated into a variety of robotic tasks.
LLMs automate environmental analysis [18], [19], reward
functions design [20], [21], and task-action mapping [22],
[23]. However, challenges such as data scarcity, real-time
performance, and real-world integration remain [24]. In
addition, due to the lack of direct perception of actual data,
tranditional LLM-driven code design struggle to effectively
incorporate real-world feedback and requires human feed-
back. Our framework addresses this by adopting environ-
mental characteristics and safety constraints as priors, and
uniquely combines homomorphic feedback from real-world
applications, reducing the need for human feedback in the
process.

Sim-to-real Training and Deploying Techniques. The
gap between simulated environments and real-world con-
ditions, known as the “reality gap”, presents significant
challenges for deploying RL strategies in robotics [25], [26].
Techniques such as domain randomization [27]–[29] and
system identification [30]–[32] are widely used to address
this issue. Researchers have proposed sim-to-real solutions
for bipedal robots to handle tasks such as turning and walking
[33], [34]. Recent work has also integrated LLMs to enhance
environmental modeling and reward function design, making
simulations more reflective of real-world complexity [10].
However, most approaches still rely on separate training
in simulation and real-world evaluation, often using human
feedback to assess sim-to-real effectiveness. Our work ex-
tends these techniques by introducing an evaluation loop
that continuously monitors sim-to-real performance during
deployment. Through the Homomorphic Evaluator and sim-
to-real gap quantification metrics, we successfully achieved
automatically generated real-world feedback.

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

III. METHODS

In this section, we introduce the AnyBipe framework
in detail. The framework consists of three interconnected
modules designed to enhance reward design, facilitate semi-
supervised RL training, and automate evaluation and feed-
back. Users are required to provide a URDF model, a
task description, an RL environment, and an operational
control platform such as ROS [35]. Additionally, a runtime
data collector, known as the State Tracker, is essential for
gathering critical data, including IMU readings, joint posi-
tions, velocities, and torques. Leveraging a well-engineered
prompt framework, we enable LLMs to generate suitable
reward functions based on user-provided patterns, ensuring
both functionality and safety. These reward functions are
then trained in modified RL environments, aided by cold
start techniques to improve convergence. The top-performing
policies are validated using a homomorphic estimator to
assess safety and compare performance with the training
stage. All results are compiled into feedback prompts to
guide iterative improvements. We model our guided training
process as a Markov Decision Process (MDP) defined as
M = (S,A, T ,R, πref , β), where S is the state space, A
is the action space, T is the training environment, R is the
reward function, πref is the reference policy, and β controls
its influence. The procedural steps are outlined in Algorithm
1.

A. Module 1: LLM Guided Reward Function Design with
Proper Prompt Engineering

We build on the Eureka algorithm’s reward function design
[20], which uses predefined environmental and task descrip-
tions D(T) to enable LLMs to autonomously refine reward
functions. However, initial usability issues often necessitate
multiple iterations for functional training code, and Eureka
tends to miss discrepancies between training T and real
environments R, yielding computationally costly, less ef-
fective reward functions that risk undefined behaviors [36].
Safety considerations for tasks like bipedal movement are
also insufficient, despite efforts with Reward-Aware Physical
Priors (RAPP) and LLM-led Domain Randomization [10].

To tackle these issues, we developed a robust context
establishment mechanism to help LLMs create reliable,
secure reward functions. Our iterative ReAct (Reason +
Act) framework [37] refines coding outputs using real-world
performance. Prompts are structured in three phases: system
prompt, task specification, and feedback. The system prompt
stage generates knowledge prompts for the RL environment
and applies few-shot prompting [38] for reward function
creation. Environmental variables (e.g., “root states”, “feet
height”, “rigid body state”) are cataloged in a reference
table to avoid non-existent variables and enhance integration
within D(T). For complex tasks like humanoid walking,
users can add custom prompts via our “coding references”
guide, enabling LLMs to learn from human examples and
produce task-specific code. A “coding restrictions” section
provides negative prompts, enforcing safety constraints like
contact forces, DoF limits, and torque bounds. Experiments

Algorithm 1 AnyBipe Framework Process

1: Pre-requisites: Training environment T , deployment
environment R, robot state tracker st

2: Require: Environment description D(T), prompt set p,
training environment estimator Etrain, homomorphic es-
timator mapping function F , safety evaluation criterion
SA. MDP M, LLM model LLM, feedback prompt
compiler COMPILE

3: Optional: Human-engineered reward function Rref , ref-
erence policy (previous work) πref , additional prompts
padd, critical human factor to be observed obsc

4: Hyperparameters: Iteration N , number of reward can-
didates K, best sample percentage cbs, teacher model
coefficient β, environment estimator coefficient ce, hu-
man factor observation coefficient cobs

5: Input: Task description D
6: Rref ← if pre-defined then reference reward else None
7: πref ← RL(Rref) or user-defined if exists else None
8: for i← 1 to N do
9: // Module 1: Reward Function Generation

10: pin ← p+ padd + pfeedback
11: R← LLM(D,D(T), pin,Rref)
12: // Module 2: Semi-Supervised RL Training
13: Π,Obs←M = (S,A, T ,R, πref , β)
14: // Module 3: Automated Evaluation and Feedback
15: nbs ← dcbs ·Ke
16: pfeedback ← None
17: Criterion← ce · Etrain(Π) +

∑
cobs ·Obs

18: Rbs, πbs ← arg maxCriterion(R,Π)
19: R̂bs ← F(Rbs)
20: for all π, R̂ in πbs, R̂bs do
21: πreal ← (T → R)(π)
22: Esim ← EVALsim(R̂(st(O)), πreal)
23: pfeedback+ = COMPILE(p,Esim)
24: if SA(Esim) is True then
25: Ereal ← EVALreal(R̂(st(O)), πreal)
26: pfeedback+ = COMPILE(p,Ereal)
27: end if
28: end for
29: Rref , πref ← arg maxCriterion(Rbs, πbs)
30: pfeedback+ = COMPILE(p, πref)
31: end for
32: Output: Best policy π, best reward function R

show LLMs effectively integrate these restrictions and vari-
ables, crafting highly efficient reward functions, demonstrat-
ing strong contextual tracking and directive adherence [39].

The task specification stage initially provides essential
training details, including a robot description, key parameters
(e.g., base height, average foot air time), and an introduction
to reward-writing techniques. After the first iteration, this
stage transitions to a comprehensive evaluation scheme,
as detailed in subsection III-C, which serves as a feed-
back prompt. This prompt includes multiple components:
the performance of the reward function, the consistency

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

You are a reward engineer trying to write reward functions to solve reinforcement
learning tasks as effective as possible, and deploy your algorithm in reality …

<System Prompt>:
Base Task

<System Prompt>:
Generated Knowledge

The RL environment is registered as …, system variables you can use are …, reward
function signs and templates are …, here are coding tips and restrictions …

R
e

as
o

n
 +

 A
ct

 It
e

ra
ti

o
n

s

*N msgs

T1: <think> The user requests to implement… </think> I implemented the
following terms, the functionality is xxx, scale range is xxx, ```python …```

Q: Issacgym environment is configured as follows … . Write reward
functions for the following task: make the robot track …

*N msgs

User

LLM

ACT1: Training in isaacgym, evaluating in MuJoCo/Gazebo…
OBS1 (Feedback): Code A execution failed, traceback …; code B training
reward value samples …, simulation reward value samples …, failed safety
check due to *term C*; code xxx passed safety check, real reward value …
Best generation is D, suggest the following modification: (1) … (2) …

T2: <think>A reported mismatch in dimension, I should modify …, B violates
torque limits, I should penalize …, C shows that term xxx is inconsistent
between training and simulation, I should modify …, D term xxx is always 0, I
should adjust scale …, term xxx performs well, I should keep … </think> I did
the following modification and reimplemented …, ```python …```

User

LLM

In
it

ia
l U

se
r

M
em

o
ry

Fig. 2: Demonstration of LLM reward generation iterations.
LLMs use a CoT format, adjusting outputs based on feed-
back. Each iteration produces N = K reward function
samples, which are trained, evaluated, and the best is used
as a template for the next iteration.

of the homomorphic estimator with the reward functions,
and adherence to safety restrictions. To ensure alignment,
the evaluator incorporates pre-defined human preferences,
such as human factor observations (obsc) and user-defined
observation terms labeled with “gt” for consistency across
LLM-generated reward functions. The success rate is also
tracked to identify the best-performing sample, which is then
used to guide the LLM in adjusting reward terms and coef-
ficients. Additionally, self-consistency techniques [40] assist
the LLM in evaluating individual reward terms, determining
their effectiveness, and making necessary modifications. For
non-executable code, error logs related to the reward file are
extracted and provided as feedback, along with adjustment
tips to refine the reward function further.

To enhance the generation process, we guide the LLMs
to produce reward functions in a Chain-of-Thought (CoT)
format [41], which includes step-by-step explanations of
their implementation. This approach encourages the LLMs
to think through the logic of the reward function, making
it easier to identify and resolve issues. The generated code
is instructed to be presented within a code block at the
end of the output, which is then processed by our script
to remove < think > tags and extract the target code. Our
experimental results demonstrate that the CoT method sig-
nificantly improves the LLM’s ability to detect and address
issues within the code, leading to more reliable and effective
reward functions.

B. Module 2: RL Training with Reference Policy for Cold-
Start

In the initial training phase, LLMs often produce poorly
scaled reward terms without external feedback, leading to
slow convergence—a challenge known as the ”cold start”
problem. Integrating a reference policy provides guidance,
helping the policy network converge toward the target objec-
tive. This section outlines modifications to direct reinforce-
ment learning (RL) training, leveraging Legged Gym and the

Proximal Policy Optimization (PPO) algorithm [42] as the
foundation. We assume a baseline policy, πref, derived from
functional policies, with interfaces for three teacher inputs:
traditional control methods (e.g., Model Predictive Control
or Whole Body Control), pre-trained policies (PyTorch or
ONNX), or simple locomotion distributions like sine waves.

To enhance PPO, we adjust the clip function loss as
follows:

LCLIP(θ) =Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

+ βKL[πref(·|st), πθ(·|st)]],
(1)

where rt(θ) = πθ(at|st)
πθold (at|st)

is the probability ratio, Ât
estimates the advantage at time t, ε is a small positive
constant, and β weights the KL divergence between the
reference and PPO policies. Here, Êt denotes expectation
over time steps.

This modification ensures similarity between the trained
and reference policies. Although integrating πref into PPO’s
probabilistic framework is complex, we approximate it as a
Dirac distribution due to the deterministic nature of actions
at for a given state st and previous action at−1. With
sufficient observations, the KL divergence Êt [KL(πref, πθ)]
simplifies to:

1

N

N∑
i=1

[
log(

√
2πσ2

θ,i) +
(aref − µθ,i)2

2σ2
θ,i

]
. (2)

Here, µθ,i and σ2
θ,i represent the mean and variance of

the policy πθ at step i, and aref is the reference action. This
approximation holds with adequate data, and β should be
small to guide the policy away from local minima without
limiting exploration.

In the AnyBipe framework, we provide a template for
integrating existing policies as teacher functions into RL
training. If a human-engineered reward is set as ground
truth, it is trained first, and the resulting policy becomes
the teacher. Users can also supply custom policies via the
template. After each iteration, the reference policy updates to
the best-performing trained policy, provided it passes a safety
check. This setup compares human-engineered and LLM-
generated policies, offering insights into metric accuracy and
preventing degradation by monitoring reward term behavior
post-modification.

C. Module 3: Feedback From Simulation and Deployment
Stage With Minimal Human Effort

Traditional Eureka-like algorithms collect training feed-
back only for the next generation, leaving the generated
policies to engineers for examination and deployment. In
contrast, our framework automates this process using Python,
Bash, and C++ scripts, implementing a robust safety check
and providing a numerical measure for the sim-to-real gap,
called the ”homomorphic estimator”. This estimator enables
LLMs to identify key terms that impact deployment.

To evaluate policy performance, we define a set of con-
sistent observations with ”ground-truth” (gt) labels across

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

all generations. For our experiments, this set includes linear
velocity, angular velocity, and survival time. The product of
these indicators, termed the environment estimator Etrain,
measures policy success. Users can also define custom ob-
servation/reward factors, termed human factors obsc, with
corresponding weights c ∗ obs. The weighted sum of these
factors is used to compute the total score, ranking policies
for simulation and deployment validation.

Rbs,Πbs = arg max
nobs

ce · Etrain(Π) +
∑

cobs ·Obsc . (3)

This procedure transforms reward functions into new
estimators that maintain consistency between training and
simulation, providing a quantitative measure of the sim-to-
real gap and helping the LLM refine its approach.

To ensure real-world safety, selected policies must pass
a safety check, denoted as SA, before being compiled by
ROS. Users must implement SA using the provided template,
which evaluates simulation data such as torques, positions,
and ground contact forces. If all checks pass, SA returns true,
and the script automatically compiles and executes the reality
deployment code. If any checks fail, the script identifies the
failed terms and generates a feedback prompt. The reality
evaluator works similarly to the simulation evaluator, collect-
ing and evaluating data. Users can monitor the process and
stop deployment if dangerous behavior is detected. External
stops are recorded, indicating deployment failure; otherwise,
deployment is considered successful. These steps provide a
score contributing to policy selection, as follows:

Rbest, πbest =

arg max [[F(Rbs)sim + F(Rbs)real](T → R)(Πbs)] .
(4)

Except for the final reality deployment stage, which may
require supervision (though it can operate autonomously or
with Vision-Language Models (VLMs) and cameras substi-
tuting human functions), the entire cycle runs autonomously.
Evaluation, safety checks, and deployment procedures are
human-free. Even initial reference rewards or pre-existing
policies are optional, as LLMs show strong potential in han-
dling zero-shot generation tasks [43]. This framework offers
a method for tuning reward functions for robot engineers
and supports developing RL policies from scratch for robots
without prior RL implementations.

IV. EXPERIMENTS

A. Experimental Setup

Experiments were conducted with three bipedal robots:
the 6 DoF pointfoot robot P1 from Limx Dynamics, the 10
DoF humanoid Unitree H1 (lower body only), and the 29
DoF humanoid from Turin Robots (12 lower body DoF, with
other DoF fixed during training), as shown in Fig. 3. Each
robot was equipped with different initial prompt sets: P1
used human-engineered reward functions as ground truth for
comparison; Unitree H1 used human-engineered functions as
templates; and Turin, without prior RL implementation, used

templates partially adapted from the open-source humanoid-
gym project, with no ground-truth reward or reference policy.
LLMs used include OpenAI GPT-4o, Anthropic Claude-3.5-
Sonnet, and Deepseek-R1 to validate the versatility of our
prompt groups and scripts. The framework was trained on a
GPU server with 4 NVIDIA RTX 3090 GPUs. The robots
were trained on common and trimesh terrains, with task
settings including N = 5 iterations, K = 16 samples,
and the top 15% (3 best samples) selected for each task.
Thanks to the GPU allocator algorithm, a total of 80 training
runs were completed in 8 hours, including LLM generation
and evaluation time. To demonstrate minimal human effort,
the entire experiment was conducted autonomously by the
framework, with only the generated policies and checkpoints
used to reproduce the results in figure form. For the two
humanoids, the framework used only simulation evaluation
with SA feedback. For P1, real-world deployment testing
validated the auto-deployment process. The GPU server was
connected to robot controllers, and simulation environments
(MuJoCo mjviewer and Gazebo) operated in headless mode.

Limx P1 Real Limx P1 Unitree H1 Turin Robot

Fig. 3: Robot and DOF definitions.

Table I lists general environment estimators as reward
functions. These estimators maintain the same form through-
out training and evaluation.

Reward Name Expression Form

Survival Rsurv =
∫ tterm,i
0 dt

Tracking Linear Velocity Rvel = exp(− ‖v−vref‖
2

σ2
l

)

Tracking Angular Velocity Rangl = exp(− ‖ω−ωref‖
2

σ2
a

)

Success Rsucc = Rsurv ·Rvel ·Rangl

TABLE I: Examples of important rewards

B. Module Analysis

Before introducing the outcome for the whole framework
process, we first conduct several experiments seperately on
each module to examine its effectiveness. We evaluated the
LLM performance, RL-training performance, homomorphic
performance, and whether SA criterion functions normally.

We evaluated each LLM base by testing prompt design and
various augmentation. The temperature for generation is set
to 0.4 for all models. We define success rate (number of code
that can be executed for all generation, SR) and max normal-
ized reward success (max Rsucc/num steps per env, the
average on three experiments, Max S.) as two important

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

Iteration 0 1 2 3 4

Top: Gazebo Bottom: Reality

Falling off

DoF limits

SA Failed

Gravity deviation

Total torque

Base SA passed

Gravity deviation

Base SA passed

Action rate

Base SA passed
All SA passed

P1 iterations.

Iteration 0 1 2 3 4

Top: Isaacgym Bottom: MuJoCo

Falling off

Gravity deviation

SA Failed

Self Collision

Gravity deviation

SA Failed

Gravity deviation

Contact force

Base SA passed

Contact force

Base SA passed
All SA passed

Leaning to

right walking

Fast pace

walking

Normal

walking

H1 iterations.

Iteration 0 1 2 3 4

Top: Isaacgym Bottom: MuJoCo

Falling off

Self collision

SA Failed

Contact force

Action rate

Base SA passed

Action rate

Contact force

Base SA passed

Contact force

Base SA passed
All SA passed

Fast pace

walking

Relatively fast

pace walking

Normal

walking

Rapid jumping

and fall off
Jumping but

not fall off

Turin iterations.

Fig. 4: Best generation policies for 5 iterations evaluated in training and evaluating environments. For P1, it is evaluated also
in reality. Figures indicate the policy improvement among iterations and safety check SA feedback below each iteration.
Colors indicate the severeness of different SA indicators.

indicators. The test result among the LLMs are shown
as follows. We noticed that Deepseek-R1 and Claude-3.5-
Sonnet shows best performance.

Name P1 H1 Turin SR Max S.

GPT-4o 228/240 173/240 52/240 62.9% 0.824
Claude-3.5 232/240 213/240 201/240 89.7% 1.032

Deepseek-R1 -/- 232/240 211/240 92.3% 1.060

TABLE II: Number of run-able code / total generation on
different bot tasks, success rate, max normalized reward
success for different LLMs.

Fig. 5: Reward success, terrain level for teacher guided and
original RL training with human-engineered rewards, using
P1 as example. Blue line shows trending of training with
teacher, and orange one is pure PPO.

To show the strength of reference policy, we take the train-
ing of P1 as example, set the reference policy using human-
engineered reward function trained policy (5000 epochs
training, flat terrain), and compare the training result using
same reward function under trimesh terrain. The teacher
coefficient is set to β = 0.5 with curriculum learning on.
Performance was measured using reward success and terrain
level2 . Results in Fig. 5 showed that the teacher-guided
model had more stable training, with faster and less volatile
reward growth.

For the Homomorphic evaluation part, the following ta-
ble shows some evaluation indicators before and after the
conversion for P1 training, and the evaluation results under
the best model. It can objectively reflect some differences

2Terrain level is a curriculum monitor for average terrain heights, regard-
ing to trimesh and stair cases defined in Isaacgym.

from simulation to reality. Each column seperately represents
reward function name, reward in isaac gym, homomorphic
measurement in gazebo, in reality, and the mapped tracking
result in reality (30 seconds of tracking, where env configu-
ration requires at least 1.6s tracking).

Name Gym Gazebo Reality Mapping (real/targ)

Track lin vel 0.8893 0.9138 0.8504 0.86 (1.0) m/s
Track ang vel 0.7652 0.6500 0.6013 0.06 (0.10) rad/s
Feet distance -0.31 -0.00 -0.00 > 0.1m (> 0.1m)
Standing still1 -5.35 -6.16 - 11.20 5.8 (30) s
Survival time 0.86 1.0 1.0 30 (30) s

Note: 1Standing still requires robot to maintain speed 0 for certain time.

TABLE III: Examples of homomorphic evaluation for point-
foot robot.

For the safety check criterion SA, we define two levels: the
base criterion, which includes falling off, self-collision (not
implemented for P13), and violating DoF and torque limits;
and the warning criterion, which includes high feet contact
forces (not implemented for P1), high action rate, high
total torque, and large gravity projection deviation. Policies
passing the base safety tests are considered deployable, and
those without warnings are regarded as safe. We conducted
3 training groups for each robot, generating 240 samples
per robot (5 × 16 results per run). Models passing the base
test are labeled as positive, and those passing both tests as
strict positive. The ground truth is established by manually
evaluating each policy’s behavior in simulation to identify
true positives and negatives. We then compute the average
precision (AP) and average recall (AR) to assess SA per-
formance. We also list another success rate (SR) defined as
the percentage of policy passed the safety check. Evaluation
proved that properly implemented SA can identify whether
policy is safe under most scenarios. This also shows that
prompts with better initial prompts leads to higher success
rate.

C. Framework Analysis

The experimental setup is summarized in Table VI. For
each type of experiment, we present results using different

3Contact detection extraction is implemented in MuJoCo only

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

Name Iter 0 Iter 1 Iter 2 Iter 3 Iter 4 Human Engineered

P1 Pointfoot (iter=5000) 14.7 (5.5) 7.1 (6.3) 9.2 (8.7) 15.5 (11.2) 25.6 (20.8) 19.2 (19.2)
Unitree H1 (iter=2000) 0.0097 (0.0035) 21.2 (12.4) 25.2 (21.7) 25.0 (22.4) 25.8 (24.9) 23.7 (23.7)
Turin Robot (iter=2000) 10.2 (1.96) 52.3 (42.9) 58.1 (51.8) 66.3 (55.4) 67.0 (57.8) None (None)

TABLE IV: Reward success Etrain, over iterations compared to human engineered ones in format of batch max (batch
average). The upper bound of the term is restrained by num step per env.

Name AP AR S-AP S-AR SR (S-SR)

P1 Pointfoot 94.3 96.4 100.0 92.6 58.7 (26.2)
Unitree H1 100.0 97.5 93.3 84.0 65.4 (18.8)
Turin Robot 97.6 96.1 83.8 93.9 52.9 (15.4)

TABLE V: Precision and recall for safety criterion in per-
centage form, ‘s’ label means strict indicator.

LLM bases4. Detailed results and setup for similar experi-
ments can be found on GitHub.

Name LLM Train Iter Sim Env Real Env

P1 Pointfoot GPT-4o 5,000 Gazebo X
Unitree H1 Claude-3.5 2,000 MuJoCo ×
Turin Robot Deepseek-R1 2,000 MuJoCo ×

TABLE VI: Framework experimental set-up.

Fig. 4 describe the best training result iterating over
framework iterations, along with SA feedback indicating
different levels of safety violation (red for not safe, yellow
for potential problem warning, and green for passed check).
P1 passes all SA check and all reality deployments are
listed. The other two are listed in training-simulation pairs.
These experiments prove that AnyBipe is capable of guiding
LLM to realize what problems might occur in certain reward
function implementation, and can act correspondingly to
solve the problem. By iterations the unsafe problems are
properly handled while maintaining code set effective.

We visualize the reward and terrain level curves for
P1 training, comparing them to human-engineered reward
curves extracted from TensorBoard logs in Fig. 6. For the
three experiments, we report the average success rate at the
midpoint and end of training for 5 iterations, comparing
them with human-engineered metrics (considered state-of-
the-art, as they are available open-source) in Table IV. Our
results demonstrate that AnyBipe can identify more effective
reward function combinations after several iterations without
human intervention. The framework can also autonomously
explore suitable code implementations in zero-shot scenarios
when no reference is provided (as shown in the Turin task).
This highlights the framework’s potential for training newly
designed robot configurations.

Experiments in Fig. 6 indicates that the trained policy can

4The choice of LLMs varies for different robots. P1 showed promising
results with GPT-4o, and alternative models did not significantly improve
performance. We intended to use Deepseek-R1, but its official API was
unstable during the experiment (Jan. 2025 to Feb. 2025), so we opted for
Claude-3.5-Sonnet instead.

(a) Restrained (b) Carpet (c) Hard Ground (d) Soft Ground (e) Stairs

Fig. 6: Reality experiments for P1 conducted on different
terrains, adopting AnyBipe’s best policy.

be truly deployed in reality, and maneuvers different kinds
of terrain types.

V. CONCLUSION

AnyBipe has presented an end-to-end framework for train-
ing and deploying bipedal robots, leveraging state-of-the-art
Large Language Models (LLMs) to design reward functions
tailored to specific tasks. The framework has provided in-
terfaces that allow users to supply coding references and
integrate pre-existing models to facilitate the training pro-
cess. Furthermore, it has incorporated feedback from both
simulated and real-world test results, enabling the execution
of Sim-to-Real tasks without human supervision while also
offering improvement directions to the LLMs. We have
validated the effectiveness of each module, as well as the
system’s capacity to guide the robot in learning locomo-
tion in complex environments, progressively improving the
model by either creating new reward functions from scratch
or refining existing ones. Moreover, this framework has
demonstrated potential for transferability to other robotic task
planning scenarios.

Despite these strengths, there remain areas for further
improvement. Treating observations and reward terms solely
as human factors may not fully capture human preferences,
and visual factors should also be considered. Also, the frame-
work automates the whole training process, but still requires
humans to implement the basic RL environment following
legged gym and our template, not generating environment
directly from LLMs. Furthermore, incorporating VLMs into
the safety criterion could improve the precision of judgment.

Future work will focus on advancing the framework
in key areas: first, expanding its application to a broader
range of robotic tasks to assess its generalizability, testing
its effectiveness beyond locomotion; second, introducing
a supervisory process during the training stage to allow
the framework to autonomously determine the duration of
reinforcement learning training, rather than relying on a fixed
total length; and third, refining the model evaluation process
by incorporating visual and conceptual feedback to achieve
a more comprehensive state estimation.

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

REFERENCES

[1] B. Acosta, W. Yang, and M. Posa, “Validating Robotics Simulators on
Real-World Impacts,” IEEE Robotics and Automation Letters, vol. 7,
no. 3, pp. 6471–6478, 2022.

[2] E. Šutinys, U. Samukaitė-Bubnienė, and V. Bučinskas, “Advanced
Applications of Industrial Robotics: New Trends and Possibilities,”
Applied Sciences, vol. 12, no. 1, p. 135, 2022.

[3] F. Ciardo and A. Wykowska, “Humanoid robot passes for human in
joint task experiment,” in Science Robotics, vol. 7, no. 68, 2022.

[4] A. Lobbezoo and H.-J. Kwon, “Simulated and Real Robotic Reach,
Grasp, and Pick-and-Place Using Combined Reinforcement Learning
and Traditional Controls,” Robotics, vol. 12, no. 1, 2023. [Online].
Available: https://www.mdpi.com/2218-6581/12/1/12

[5] D. Ernst and A. Louette, “Introduction to reinforcement learning,”
Business & Information Systems Engineering, vol. 66, no. 1, pp. 111–
126, 2024.

[6] K.-C. Hsu, A. Z. Ren, D. P. Nguyen, A. Majumdar, and J. F. Fisac,
“Sim-to-Lab-to-Real: Safe reinforcement learning with shielding and
generalization guarantees,” Artificial Intelligence, vol. 314, p. 103811,
2023.

[7] Salvato, Erica and Fenu, Gianfranco and Medvet, Eric and Pellegrino,
Felice Andrea, “Crossing the Reality Gap: A Survey on Sim-to-Real
Transferability of Robot Controllers in Reinforcement Learning,” IEEE
Access, vol. 9, pp. 153 171–153 187, 2021.

[8] N. Shah, Z. Genc, and D. Araci, “Stackeval: Benchmarking llms
in coding assistance,” in The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track.

[9] W. Xia, D. Wang, X. Pang, Z. Wang, B. Zhao, D. Hu, and X. Li,
“Kinematic-aware Prompting for Generalizable Articulated Object
Manipulation with LLMs,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA), 2024, pp. 2073–2080.

[10] Y. J. Ma, W. Liang, H. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani,
and D. Jayaraman, “DrEureka: Language Model Guided Sim-To-Real
Transfer,” in Robotics: Science and Systems (RSS), 2024.

[11] J. Hwangbo, J. Lee, L. Wellhausen, H. Kolvenbach, and M. Hutter,
“Learning Agile and Dynamic Motor Skills for Legged Robots,”
Science Robotics, vol. 4, no. 26, p. Art. no. eaau5872, 2019.

[12] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal,
“Learning, planning, and control for quadruped locomotion over chal-
lenging terrain,” in 2011 IEEE International Conference on Robotics
and Automation. IEEE, 2011, pp. 236–241.

[13] J. Lee, J. Hwangbo, L. Wellhausen, H. Kolvenbach, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, p. eabc5986, 2020.

[14] W. Huang, N. Gopalan, M. Ahn et al., “Inner Monologue: Embodied
Reasoning through Planning with Language Models,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022.

[15] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, et al., “Do As I Can,
Not As I Say: Grounding Language in Robotic Affordances,” arXiv
preprint arXiv:2204.01691, 2022.

[16] Y. Wang and H. Li, “Code completion by modeling flattened abstract
syntax trees as graphs,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 35, no. 16, 2021, pp. 14 015–14 023.

[17] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence,
and A. Zeng, “Code as policies: Language model programs for em-
bodied control,” in 2023 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2023, pp. 9493–9500.

[18] L. Wang, Y. Ling, Z. Yuan, M. Shridhar, C. Bao, Y. Qin, B. Wang,
H. Xu, and X. Wang, “Gensim: Generating robotic simulation tasks
via large language models,” arXiv preprint arXiv:2310.01361, 2023.

[19] Y. Wang, Z. Xian, F. Chen, T.-H. Wang, Y. Wang, K. Fragkiadaki,
Z. Erickson, D. Held, and C. Gan, “Robogen: Towards unleashing
infinite data for automated robot learning via generative simulation,”
arXiv preprint arXiv:2311.01455, 2023.

[20] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman,
Y. Zhu, L. Fan, and A. Anandkumar, “Eureka: Human-level reward
design via coding large language models,” arXiv preprint arXiv: Arxiv-
2310.12931, 2023.

[21] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik et al., “Language to
rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647,
2023.

[22] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter,
A. Wahid, J. Tompson, Q. Vuong, T. Yu et al., “Palm-e: An embodied
multimodal language model,” arXiv preprint arXiv:2303.03378, 2023.

[23] S. H. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for
robotics: Design principles and model abilities,” IEEE Access, 2024.

[24] F. Zeng, W. Gan, Y. Wang, N. Liu, and P. S. Yu, “Large language
models for robotics: A survey,” arXiv preprint arXiv:2311.07226,
2023.

[25] A. Brunnbauer et al., “Latent Recovery for Sim-to-Real Transfer in
Robot Reinforcement Learning,” in 2022 International Conference on
Robotics and Automation (ICRA). IEEE, 2022, pp. 1700–1706.

[26] J. Betz and H. Zheng, “Bypassing the Simulation-to-Reality Gap:
Online Reinforcement Learning Using a Supervisor,” in 2023 21st
International Conference on Advanced Robotics (ICAR). IEEE, 2023,
pp. 325–331.

[27] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, and J. Peters,
“Robot learning from randomized simulations: A review,” Frontiers in
Robotics and AI, vol. 9, p. 799893, 2022.

[28] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[29] G. Tiboni, P. Klink, J. Peters, T. Tommasi, C. D’Eramo, and G. Chal-
vatzaki, “Domain Randomization via Entropy Maximization,” arXiv
preprint arXiv:2311.01885, 2023.

[30] K. Åström and P. Eykhoff, “System identification-A survey,” Automat-
ica, vol. 7, no. 2, pp. 123–162, 1971.

[31] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based
and data-efficient approach to policy search,” Proceedings of the 28th
International Conference on Machine Learning (ICML), pp. 465–472,
2011.

[32] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[33] H. Duan, A. Malik, J. Dao, A. Saxena, K. Green, J. Siekmann, A. Fern,
and J. Hurst, “Sim-to-Real Learning of Footstep-Constrained Bipedal
Dynamic Walking,” in 2022 International Conference on Robotics and
Automation (ICRA), 2022, pp. 10 428–10 434.

[34] F. Yu, R. Batke, J. Dao, J. Hurst, K. Green, and A. Fern, “Dynamic
Bipedal Turning through Sim-to-Real Reinforcement Learning,” in
2022 IEEE-RAS 21st International Conference on Humanoid Robots
(Humanoids), 2022, pp. 903–910.

[35] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[36] Y. Kim, H. Oh, J. Lee, J. Choi, G. Ji, M. Jung, D. Youm, and
J. Hwangbo, “Not only rewards but also constraints: Applications on
legged robot locomotion,” IEEE Transactions on Robotics, 2024.

[37] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” arXiv
preprint arXiv:2210.03629, 2022.

[38] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[39] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in
neural information processing systems, vol. 35, pp. 27 730–27 744,
2022.

[40] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowd-
hery, and D. Zhou, “Self-consistency improves chain of thought
reasoning in language models,” arXiv preprint arXiv:2203.11171,
2022.

[41] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in
large language models,” Advances in neural information processing
systems, vol. 35, pp. 24 824–24 837, 2022.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv: Machine Learning,
vol. abs/1707.06347, 2017.

[43] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large
language models are zero-shot reasoners,” Advances in neural infor-
mation processing systems, vol. 35, pp. 22 199–22 213, 2022.

	No margin impositions were found

